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Abstract. We approach the concept of Pivotal Rule Consequence (PRC)
proposed in [14,15] from a semantical perspective, resorting to model up-
dates in Public Announcement Logic (PAL) [17]. In doing this, we take
inspiration from the notion of dynamic consequence from [3,6]. Our per-
spective gains in interest since PRC serves as a “bridge” from Classical
Logic to Default Logic –one of the most well-known non-monotonic for-
malisms. We show how the internalization of PRC in PAL leads to clear
semantics of the former, and to completeness and transfer results. More-
over, we address the case of credulous consequence in Default Logic as a
particular case of PRC. Interestingly, we cast credulous consequence as
a model checking problem. We argue that our results open the way to
use well-known semantic tools from modal logic to study properties of
different non-monotonic logics.

1 Introduction

In spite of its logical terminology, the field of non-monotonic logic has a reputa-
tion for presenting itself in an unfamiliar way to traditional logicians. In [14,15],
it is shown that this need not be the case. The argument put forth is that,
provided some preconceptions and misconceptions are set aside, there are logics
acting as natural “bridges” between classical consequence and some well-known
non-monotonic logics. These bridges possess some of the characteristics of their
classical starting points and, at the same time, they start exhibiting some of the
distinctive features of their non-monotonic endpoints. Crucially, monotonicity is
not given up initially. Instead, it originates as a result of introducing “consistency
checks”. Using these bridges, it is possible to transition in a clear and step-wise
manner from classical to non-monotonic logics.

In this paper, we focus our attention on so-called pivotal-rule consequence
(PRC). This bridge extends the classical notion of consequence by using non-
admissible rules of inference called pivotal rules (i.e., by using rules whose incor-
poration modifies the set of consequences of a logic). By imposing “consistency
checks” on how pivotal rules are used, PRC takes us from classical consequence
to consequence in Default Logic [18] –one of the most prominent approaches to
non-monotonic reasoning [1].
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The results in [14,15] are obtained by manipulating PRC via closure operators
on sets of formulas. In this work, we revise PRC from a semantical perspective
resorting to the formal machinery of Public Announcement Logic (PAL) [17].
In this revision, we take inspiration from van Benthem’s program on “logical
dynamics” [3] (see also [6,19]). On the one hand, PAL is a modal logic with an
announcement modality [ϕ] that restricts the current (relational) model to those
states where ϕ holds. On the other hand, the program on logical dynamics shifts
the static role played by premisses in a consequence relation and views them as
new information brought into consideration via some action. This results in the
consequence relation taking a dynamic stance. In very simple terms, the program
on logical dymamics takes the premisses of a consequence relation as a sequence
of announcements; i.e., ψ1, . . . , ψn � ϕ shifts to � [ψ1] . . . [ψn]ϕ. We adapt these
ideas to capture the effect brought in by the use of pivotal rules in PRC. In doing
so, we show that pivotal-rule consequence can be seen as a dynamic modal logic.

In addressing PRC from a semantic perspective we complete the picture
of [14,15]. Our results establish a novel connection between PRC and Modal
Logic, via PAL. In addition to offering new insights into the nature of the frame-
work proposed n [14,15], our approach allows for transfer results: theoretical
and practical tools developed for PAL turn out relevant for PRC (and for Default
Logic as a particular case). These results include: bisimulations, axiomatizations,
tableaux calculi, model checking algorithms, etc.

Contributions. We show how PRC, and credulous consequence in Default Logic
as a particular case, can be seen as a modal logic using dynamic update oper-
ators. In doing this, the formal machinery of PAL turns out to be sufficiently
expressive. Interestingly, we obtain that credulous consequence reduces to model
checking in PAL. Our results establish that PAL can be seen as providing a
model theoretic semantics for PRC and to credulous consequence as a special
case. This approach differs fundamentally from other semantic takes on Default
Logic, e.g., those in [9,4,7]. We provide a mapping from credulous consequence
to consequence in a modal logic with updates, i.e., PAL. In particular, we cap-
ture credulous consequence as particular tautologies of PAL–something which, as
far as we know, has not been addressed. Moreover, we detail how our approach
leads to natural axiomatizations, and to expressivity and complexity results.
Concretely, our contributions consist of:
1. A novel characterization of PRC in terms of Hilbert-style deductions (some-

thing which we use in the rest of the paper).
2. A characterization of PRC as particular tautologies of an alternative presen-

tation of PAL, which we refer to as Pivotal Modal Logic (PML).
3. A study of the logical properties of PRC via transfer results from PML. In

particular, axiomatization, expressivity and complexity results.
4. A characterization of credulous consequence in PML. Again, we use our frame-

work to investigate an axiomatization, expressivity and complexity results.
Interestingly, deciding credulous consequence boils down to a model checking
problem over a particular model. This enables us to obtain a reasonable small
complexity upper bound in a simple way.
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Structure. Sec. 2 covers basic material on Classical Propositional Logic. Sec. 3
presents PRC. As a first novel result, we offer a way of looking at PRC via
Hilbert-style deductions. Sec. 4 shows how PAL can be used to capture PRC
from a semantic perspective (see Thm. 2). We use our framework to study:
axiomatization, expressivity and complexity results. Sec. 4.2 discusses the case
of credulous consequence from a semantic perspective (see Thm. 5) and study its
properties. Sec. 5 offers some final remarks and discusses future lines of research.

2 Preliminaries

We briefly review the basics of classical propositional logic (CPL; see, e.g., [16]).

Definition 1. Let Prop = { pi | i ∈ N } be a set of proposition symbols; the set
Form0 formulas of CPL built on Prop is given by the grammar

ϕ,ψ ::= pi | ⊥ | ϕ→ ψ.

We use >, ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, and ϕ↔ ψ as abbreviations – defined as usual.

The semantics of CPL is given resorting to assignments and valuations.

Definition 2. An assignment is a function v : Prop→ {0, 1}. A valuation is an
extension of an assignment v to a function v∗ : Form0 → {0, 1} s.t.: v∗(⊥) = 0,
and v∗(ϕ→ ψ) = 1 iff either v∗(ϕ) = 0, or v∗(ψ) = 1. A valuation v∗ is a model
of ϕ (or ϕ is satisfiable in v∗), written v∗ � ϕ, iff v∗(ϕ) = 1. A formula ϕ has
a model, or is satisfiable, iff exists a valuation v∗ s.t. v∗ � ϕ. These definitions
extend to sets of formulas in the obvious way.

Def. 2 yields a relation of semantic consequence between sets of formulas,
called premisses, and formulas, called consequences. This relation is given below.

Definition 3. A formula ϕ is a (semantic) consequence of a set of formulas Φ,
written Φ � ϕ, iff for all valuations v∗, v∗ � Φ implies v∗ � ϕ. We call a formula
ϕ a tautology, and write � ϕ, iff ∅ � ϕ.

The syntactic counterpart of the relation � is defined via deductions.

Definition 4. A deduction of a formula ϕ from a set of formulas Φ is a finite
sequence ψ̄ = ψ1 . . . ψn of formulas s.t. ψn = ϕ, and for all k < n, either:

1. ψk is an axiom of CPL (see [16]);
2. ψk is a premiss (i.e., ψk ∈ Φ);
3. ψk is obtained using mp (i.e., exists i, j < k s.t. ψj = ψi → ψk).

We write Φ ` ϕ iff exists a deduction of ϕ from Φ.

Theorem 1 (Soundness-Completeness). Φ ` ϕ iff Φ � ϕ.
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3 From Classical to Default Consequence

Deductions in CPL give rise to an operation Cn : 2Form0 → 2Form0 defined as
Cn(Φ) = {ϕ | Φ ` ϕ }. This operation satisfies some well-known properties. In
particular, it satisfies the principle of monotonicity, i.e.:

Φ ⊆ Ψ implies Cn(Φ) ⊆ Cn(Ψ).

Following [14,15], we show how to construct, in a natural way, an operation
D which extends Cn but which fails to satisfy monotonicity. We introduce D
by taking a detour via an operation C which retains monotonicity, but starts
exhibiting some of the distinctive features of D. When seen in this light, C acts
as a bridge between Cn and D, and it streamlines the presentation of the latter.

We begin the presentation of the operation C by introducing pivotal rules.

Definition 5. A pivotal rule is a pair (π, χ) of formulas of CPL. We use (π/χ)
as notation for a pivotal rule; we call π its prerequisite and χ its consequent.
The image of a set P of pivotal rules under a set Φ formulas of CPL is defined as
P (Φ) = {χ | (π/χ) ∈ P and π ∈ Φ }. The set Φ is closed under P if P (Φ) ⊆ Φ.

Henceforth, we will deal only with finite sets P of pivotal rules. Pivotal
rules are best understood as non-admissible rules of inference, i.e., rules whose
incorporation extends the set of CPL-consequences of a set of formulas. Def. 6
makes this idea clear.

Definition 6. Let P be a set of pivotal rules; define CP : 2Form0 → 2Form0 as:
CP (Φ) =

⋂
{Ψ | Φ ⊆ Ψ, Cn(Ψ) ⊆ Ψ, and P (Ψ) ⊆ Ψ }.

We say that ϕ is a pivotal-rule consequence of Φ iff ϕ ∈ CP (Φ).

The operation CP in Def. 6 is called pivotal-rule consequence in [15]. From
now on, we refer to it as pivotal consequence. In words, CP (Φ) is the smallest
superset of Φ closed under Cn and P . Note that Def. 6 does not introduce a single
operation C but a family of such operations; one for each set P of pivotal rules.
We drop the subscript P if it can be understood from context or not needed.

From its definition, Cn(Φ) ⊆ C(Φ). For this reason, we say that C extends Cn.
Just as Cn, C is monotonic: Φ ⊆ Ψ implies C(Φ) ⊆ C(Ψ). Moreover, C is closed:
C(C(Φ)) = C(Φ). Nevertheless, C diverges from Cn in some important ways. For
instance, C may fail to satisfy the property of disjunction. This property states
that if γ ∈ C({ϕ}) and γ ∈ C({ψ}), then, γ ∈ C({ϕ ∨ ψ}). To see its failure, let
P = {(p/q), (r/q)}; then q ∈ CP ({p}) and q ∈ CP ({r}), but q /∈ CP ({p ∨ r}).

Def. 7 offers another way of looking at C. This definition also serves as an
intermediate step towards non-monotonicity.

Definition 7. Let P̄ be a total ordering of a set P of pivotal rules; we use
(πi/χi) to indicate the i-th element of P̄ . Define an operation CP̄ : 2Form0 →
2Form0 s.t. for all Φ, CP̄ (Φ) =

⋃
{CiP̄ (Φ) | i ≥ 0 } where:

C0
P̄ (Φ) = Cn(Φ) and C

(i+1)

P̄
(Φ) =

{
Cn(CiP̄ (Φ) ∪ {χi}) if πi ∈ CiP̄ (Φ)

CiP̄ (Φ) otherwise.
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As before, we write C̄ when there is no need to make the set P of pivotal rules
explicit. The operation C̄ does not immediately characterize the operation C. For
instance, in general, C̄ is not closed, i.e., C̄(Φ) 6= C̄(C̄(Φ)). To see why, let P =
{(q/r), (p/q)}; consider the total ordering P̄ in which (q/r) is before (p/q); then,
CP̄ ({p}) = Cn({p, q}); however, CP̄ (CP̄ ({p})) = Cn({p, q, r}). Nonetheless, it is
possible to establish the following result.

Proposition 1. ϕ ∈ CP (Φ) iff exists P̄ s.t. ϕ ∈ CP̄ (Φ).

Prop. 1 tells us that pivotal consequence amounts to checking what is the
case in some total ordering of pivotal rules.

The argument in [15] is that C helps us to pave the way to non-monotonicity.
More precisely, we obtain a non-monotonic consequence operation by imposing a
consistency constraint on the use of the pivotal rules. We make this clear below.

Definition 8. Let P̄ be a total ordering on a set P of pivotal rules; define an
operation DP̄ : 2Form0 → 2Form0 s.t. for all Φ, DP̄ (Φ) =

⋃
{Di

P̄ (Φ) | i ≥ 0 } where:

D0
P̄ (Φ) = Cn(Φ) and D

(i+1)

P̄
(Φ) =


Cn(Di

P̄ (Φ) ∪ {χi}) if πi ∈ Di
P̄ (Φ)

and ¬χi /∈ Di
P̄ (Φ)

Di
P̄ (Φ) otherwise.

Again, we use D̄ when there is no need to make P explicit. The operation D̄,
and the operations Cn and C̄ are related in the following proposition.

Proposition 2. Cn(Φ) ⊆ D̄(Φ) ⊆ C̄(Φ).

D̄ retains some properties of C̄. E.g., it extends Cn; in general it is not
closed; and it may fail to satisfy the property of disjunction. This said, or-
derings which are indistinguishable in the case of C̄ are distinguishable in the
case of D̄. To illustrate this point, let P = {(p/q), (p/¬q)}; consider orderings
P̄1 = 〈(p/q), (p/¬q)〉 and P̄2 = 〈(p/¬q), (p/q)〉; then DP̄1

({p}) = Cn({p, q}) and
DP̄2

({p}) = Cn({p,¬q}). Yet, CP̄1
({p}) = CP̄2

({p}) = Form0. More interest-
ingly, D̄ fails to satisfy monotonicity, i.e., it is non-monotonic. For example, let
P = {(p/q)}; then DP̄ ({p}) = Cn({p, q}); however, DP̄ ({p,¬q}) = Cn({p,¬q}).

The operation D̄ is in itself of interest. However, in some cases, we may want
to depart from particular orderings. We make this idea precise in Def. 9.

Definition 9. Define DP s.t. ϕ ∈ DP (Φ) iff exists P̄ s.t. ϕ ∈ DP̄ (Φ).

We often write D instead of DP . The following proposition is immediate.

Proposition 3. It follows that: D̄(Φ) ⊆ D(Φ) ⊆ C(Φ).

The operation D is interesting because it coincides with credulous conse-
quence for the case of normal defaults in default logic (see [18,14]). Namely, ϕ
is a credulous default consequence of Φ iff ϕ ∈ D(Φ). It is important to notice
that this operation is not closed, i.e., in general, D(D(Φ)) 6= D(Φ). To see why,
let P = {(>/p), (>/¬p)}; it follows that DP (∅) = Cn({p}) ∪ Cn({¬p}); whereas
DP (DP (∅)) = Form0. This example also shows that D(∅) 6= Cn(D(∅)). In other
words, D may not be closed under Cn.
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Pivotal Deductions. We conclude this section with a novel characterization of
the operations C and D via what we call pivotal deductions. This is our first con-
tribution and it provides us the right setting to investigate pivotal consequence
from a dynamic logic perspective. We will retake these ideas in Sec. 4.

Definition 10. Let P be a set of pivotal rules; a P -deduction of a formula ϕ
from a set of formulas Φ is a finite sequence ψ̄ = ψ1 . . . ψn of formulas such that
ψn = ϕ, and for all k < n one of the following holds:

1. ψk is an axiom of CPL, a premiss, or obtained using mp (see Def. 4); or
2. exists j < k s.t. (ψj/ψk) ∈ P –called P -detachment.

We say that a pivotal rule ρ ∈ P has been used in ψ̄ iff ρ = (ψj/ψk) for some
1 ≤ j < k ≤ n. Let Ψ be the set of all consequents of the pivotal rules used in ψ̄,
we call ψ̄ credulous iff Cn(Φ ∪ Ψ) = Form0 iff Cn(Φ) = Form0. We write:

1. Φ `P ϕ iff exists a P -deduction of ϕ from Φ;
2. Φ |∼P ϕ iff exists a credulous P -deduction of ϕ from Φ.

We often refer to P -deductions as pivotal deductions and to credulous P -
deductions as credulous deductions. Intuitively, a pivotal deduction extends the
notion of a deduction in CPL acommodating for the use of pivotal rules via
P -detachment. The following propositions are immediate from the definitions.

Proposition 4. Φ `P ϕ iff exists a seq. ρ̄ = ρ1 . . . ρn of pivotal rules in P s.t.:

Φ ∪X ` ϕ and for all 1 ≤ i ≤ n, Φ ∪X(i−1) ` πi, (1)

where: πi = (πi/χi); Xj = {χ1, . . . , χj}; and X = Xn. Moreover, Φ |∼P ϕ iff in
addition to Eq. (1) it holds that

for all 1 ≤ i ≤ n, Φ ∪X(i−1) 6` ¬χi. (2)

Proposition 5. ϕ ∈ CP (Φ) iff Φ `P ϕ; and ϕ ∈ DP (Φ) iff Φ |∼P ϕ;

From Props. 4 and 5, it follows that pivotal deductions provide witnesses for
ϕ ∈ C(Φ); whereas credulous deductions provide witnesses for ϕ ∈ D(Φ).

Remark 1. Def. 10 and Prop. 5 bring about a discussion on compactness for the
operations C and D. It can easily be established that ϕ ∈ C(Φ) iff for some
finite Φ′ ⊆ Φ, ϕ ∈ C(Φ′). The same claim is not true for D. Although ϕ ∈ D(Φ)
implies that there is a finite Φ′ ⊆ Φ s.t. ϕ ∈ D(Φ′), in general, the converse of
this statement does not hold. This is unsurprising for, as commented on in [14],
full compactness for D brings back monotonicity.
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4 From Pivotal Rules to Model Updates

In this section we look at pivotal consequence through the lens of modal logic [5].
The modal logic we use is an alternative presentation of the single-agent Public
Announcement Logic (PAL) [17]. PAL has as its distinguishing characteristic a
modality which can “update” the model while a formula is evaluated. The inclu-
sion of this update modality has three main benefits in our semantic exploration
of pivotal consequence. First, it enables us to internalize the effect of pivotal rules
in the object language, inspired by the notion of dynamic consequence [3,6]. Sec-
ond, it enables us to provide a semantics for pivotal rules. Third, it opens the
door for a study of operations C and D in Sec. 3 from the perspective of modal
model theory. Our framework builds a novel bridge between pivotal consequence
and modal logic, and particularly, from default consequence to modal logic.

4.1 Pivotal Consequence in PAL

We begin with a brief introduction to the formal machinery behind PAL [8].
To avoid confusions with its usual presentation, we refer to our presentation of
PAL as Pivotal Modal Logic (PML). In what follows, we use �CPL to indicate the
relation of semantic consequence of CPL (see Def. 3).

Definition 11. The set Form of PML formulas is built over the set Prop of
proposition symbols and is given by the grammar:

ϕ,ψ ::= pi | ⊥ | ϕ→ ψ | Aϕ | [ϕ]ψ.

Other Boolean operators are defined as usual. Moreover, we use Eϕ and 〈ϕ〉ψ to
abbreviate ¬A¬ϕ and ¬[ϕ]¬ψ, resp. We refer to the elements of the language of
PML as pivotal (modal) formulas.

Pivotal formulas are interpreted over pivotal models.

Definition 12. A pivotal model is a non-empty subset M ⊆ {0, 1}Prop, i.e., it
is a non-empty set of functions w : Prop→ {0, 1}. The pair M, w is a pointed
pivotal model iff w ∈M. We say that M, w is finite iff M is finite.

Intuitively, we look at pivotal models as sets of CPL-assignments (cf. Def. 2).
The definition of satisfiability in a pivotal model is given immediately below.

Definition 13. Let M, w be a pointed pivotal model; for any pivotal formula ϕ,
we define ϕ is satisfiable in M at w, written M, w 
 ϕ, inductively as:

M, w 
 ⊥ never
M, w 
 p iff w(p) = 1
M, w 
 ϕ→ ψ iff M, w 
 ϕ implies M, w 
 ψ
M, w 
 Aϕ iff for all w′ ∈M, M, w′ 
 ϕ
M, w 
 [ϕ]ψ iff M, w 
 ϕ implies M|ϕ, w 
 ψ,

where: M|ϕ = {w ∈ M | M, w 
 ϕ }5. We write M 
 ϕ iff for all w in M,
M, w 
 ϕ. Let Φ be a set of pivotal formulas; we define M, w 
 Φ and M 
 Φ as
5 M|ϕ might be empty. If so, M, w 
 ϕ doesn’t hold and M, w |= [ϕ]ψ is trivially true.
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usual. We write Φ � ϕ iff for all M, w, if M, w 
 Φ, then, M, w 
 ϕ. We write
� ϕ instead of ∅ � ϕ.

Def. 13 states that A and E are the universal and existential modalities [11];
and that [_] and 〈_〉 are the update modalities of PAL [17].

Let us turn our attention onto how to use PML to capture pivotal consequence
from a semantic perspective. The following propositions are preliminary and are
meant to shed light into the relation between pivotal models and CPL valuations.

Proposition 6. Let ϕ and ψ be CPL-formulas; then: 1. {ϕ} �CPL ψ iff {ϕ} � ψ;
and 2. {ϕ} �CPL ψ iff � [ϕ]ψ. Moreover, for any PML-formula χ, we get that:
3. � [ϕ][ψ]χ iff � [ϕ ∧ ψ]χ.

Proof. Item 1 is immediate. For Item 2, we prove {ϕ} 6�CPL ψ iff 6� [ϕ]ψ. Left to
right: Suppose that {ϕ} 6�CPL ψ. Then, there is an assignment v : Prop→ {0, 1}
s.t. v∗(ϕ) = 1 and v∗(ψ) = 0. Let M be the pivotal model which consists solely
of v, i.e., M = {v}. Since M|ϕ = M = {v}, it follows that M, v 
 ϕ and
M|ϕ, v 1 ψ. Thus, 6� [ϕ]ψ. Right to left: Suppose that 6� [ϕ]ψ. There is M, w
s.t. M, w 1 [ϕ]ψ. This means that M, w 
 ϕ and M|ϕ, w 1 ψ. Let w∗ be the
CPL-valuation based on w; immediately, w∗(ϕ) = 1 and w∗(ψ) = 0. Therefore,
{ϕ} 6�CPL ψ. Item 3 follows from the fact that: if ϕ and ψ are CPL-formulas, then,
for any pivotal model M, (M|ϕ)|ψ = M|(ϕ∧ψ). To see why, let w ∈M|(ϕ∧ψ); by
definition, M, w 
 ϕ ∧ ψ. Then, M, w 
 ϕ and M, w 
 ψ. So, w ∈ M|ϕ and
M|ϕ, w 
 ψ. This implies w ∈ (M|ϕ)|ψ; from which we get, M|(ϕ∧ψ) ⊆ (M|ϕ)|ψ.
Similarly, (M|ϕ)|ψ ⊆M|(ϕ∧ψ). Therefore, (M|ϕ)|ψ = M|(ϕ∧ψ).

Prop. 6 portrays the relation between the update modality [_] and CPL-
consequence as a simple instance of the notion of dynamic consequence from [3,6].

We introduce some notation to help us deal with pivotal consequence in PML.

Definition 14. Let (π/χ) be a pivotal rule, and ψ be a pivotal formula; we use
(π/χ)ψ as an abbreviation for π ∧ [χ]ψ.

Intuitively, (π/χ)ψ captures the effect of a single P -detachment step in Def. 10
in semantic terms.6 Prop. 7 gives a more concrete view of how this is done.

Proposition 7. Let (π/χ) be a pivotal rule, and ϕ and ψ be CPL-formulas:
� [ϕ](π/χ)ψ iff {ϕ} �CPL π and {ϕ, χ} �CPL ψ.

Proof. Left to right: Suppose that � [ϕ](π/χ)ψ. By definition, � [ϕ](π ∧ [χ]ψ).
It follows that, � [ϕ]π ∧ [ϕ][χ]ψ, and so (a) � [ϕ]π and (b) � [ϕ][χ]ψ. We obtain
{ϕ} �CPL π using (a) and Item 2 in Prop. 6. We obtain {ϕ, χ} �CPL ψ using (b)
and Items 1 and 3 in Prop. 6.

The result in Prop. 7 can be generalized to capture the effect of successive
P -detachment steps at the level of pivotal models. This is done in Prop. 8.
6 Def. 14 allows us to refer indistinctly to a pivotal rule, and to the corresponding
formula capturing it. Context will always disambiguate.
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Proposition 8. Let ρ̄ = ρ1 . . . ρn be a sequence of pivotal rules s.t. ρi = (πi/χi);
and ϕ and ψ be CPL-formulas. It follows that � [ϕ]ρ̄ψ is equivalent to

for all 1 ≤ i ≤ n, {ϕ, χ1, . . . , χ(i−1)} �CPL πi.

Proof. By definition, [ϕ]ρ̄ψ = [ϕ](π1 ∧ ([χ1](. . . (πn ∧ [χn]ψ)))). The cases where
ρ̄ is empty or has just one pivotal rule correspond exactly to Item 1 in Prop. 6
and to Prop. 7. The general case makes repeated use of the fact that � [γ](ξ∧ η)
iff � [γ]ξ ∧ [γ]η and Item 3 in Prop. 7.

It is easy to see that Prop. 8 is the semantic counterpart to Prop. 4. This
proposition enables us to internalize the effect of P -detachment steps in the
language of PML. Moreover, it leads in a natural way to the following semantic
formulation of pivotal consequence as a tautology of PML.

Definition 15. Let P be a set of pivotal rules, and ϕ and ψ be CPL-formulas;
define {ϕ} �P ψ iff exists a sequence ρ̄ of pivotal rules in P s.t. � [ϕ]ρ̄ψ.

Thm. 2 establishes the parallel between `P and �P . Its proof is direct from
Props. 4 and 8, and Thm. 1.

Theorem 2. Let P be a set of pivotal rules, and ϕ and ψ be CPL-formulas:
{ϕ} `P ψ iff {ϕ} �P ψ.

Thm. 2 offers an account of how to capture pivotal consequence semantically,
and from a dynamic perspective, as certain tautologies of PML. It may be noted
that the definitions and results presented above restrict their attention to sin-
gleton sets of premisses. There is no loss of generality in this restriction. Def. 15
can be extended to arbitrary sets of premisses by defining ϕ = ϕ1 ∧ · · · ∧ ϕn for
some finite subset {ϕ1 . . . ϕn} ⊆ Φ. This reformulation of Def. 15 has no impact
on Thm. 2 because of compactness of CPL. We have chosen to deal with singleton
sets of premisses to simplify the exposition of the main concepts and results.

Transfer Results. We conclude this section by showing some transfer results
from PML to the setting of pivotal consequence. In particular, we tackle com-
plete axiomatizations, expressivity, and complexity of pivotal consequence. These
results take advantage of the fact that PML is a modal logic.

Axiom system. Working a logic from a semantic perspective has its advantages.
In our case, it enabled us to recast the notion of pivotal rule consequence over
CPL formulas into a notion of tautology in PML. At the same time, one may ask
whether it is possible to use a syntatic deduction system in PML to determine
pivotal rule consequence.

Tab. 1 introduces an axiomatization of PML. This is a standard complete
axiomatization for PAL. It includes the S5 axioms and rules for the A modality,
and the reduction axioms for eliminating [_] (see, e.g., [11,8] for details).

Theorem 3. Tab. 1 is a sound and strongly complete axiom system for PML.
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Table 1: Axiom system for PML.

Axioms:

(Taut) CPL-tautologies (K) (A(ψ → ϕ) ∧ Aψ) → Aϕ (T) Aϕ→ ϕ

(4) Aϕ→ AAϕ (5) ¬Aϕ→ A¬Aϕ

Rules: (mp) from ϕ→ ψ and ϕ infer ψ (nec) from ϕ infer Aϕ

Reduction Axioms: (univ) [ϕ]Aψ ↔ (ϕ→ A[ϕ]ψ) (bot) [ϕ]⊥ ↔ (ϕ→ ⊥)

(imp) [ϕ](ψ → χ) → ([ϕ]ψ → [ϕ]χ) (prop) [ϕ]pi ↔ (ϕ→ pi)

The axiom system for PML is the exact machinery behind single-agent PAL.
The global modality A can be seen as a total relation in a Kripke model. Thm. 3
implies that P -deductions can be captured as deductions in single-agent PAL.

Expressive Power. Turning to expressivity, it is important to determine whether
two models are structurally equivalent for a particular logic; and to provide char-
acterization results which make coincide the notion of model equivalence and of
logical equivalence. In Modal Logic this is related to the notion of bisimula-
tion [2]. Model equivalence in PML is fairly straightforward. It is easily seen that
finite models form a Hennessy-Milner class for PML (see, e.g., [10] for details).

Definition 16. Let M1, w1 and M2, w2 be two pointed pivotal models; we write
M1, w1 ≡M2, w2 iff M1, w1 
 ϕ iff M2, w2 
 ϕ (for all PML-formulas ϕ).

Proposition 9 (Hennessy-Milner Property). The following are equivalent:
1. M1, w1 = M2, w2; and 2. M1, w1 ≡M2, w2.

Proof. Left to right: trivial. Right to left: we prove M1, w1 6= M2, w2 implies
M1, w1 6≡ M2, w2. Suppose that M1, w1 6= M2, w2; either (1) w1 66= w2 or (2)
M1 6= M2. From (1), exists p ∈ Prop s.t. w1(p) 6= w2(p). But then, (w.l.o.g.)
M1, w1 
 p andM2, w2 1 p. Thus,M1, w1 6≡M2, w2. From (2), (w.l.o.g.) there is
w∗ ∈M1 s.t. w∗ 6∈M2. That is, for all wi ∈M2, there is pj s.t. w∗(pj) 6= wi(pj).
Moreover, because M1 and M2 are finite, there is a maximal j such that pj has
this property. Let ϕ = (l0 ∧ . . . ∧ lj) where li = pi if w∗(pi) = 1 and li = ¬pi
otherwise. Clearly, M1, w1 
 Eϕ (because of w∗), but M2, w2 1 Eϕ. Thus,
M1, w1 6≡M2, w2.

Prop. 9 shows that finite pivotal models form a Hennessy-Milner class for
PML [10]. Intuitively, this means that over this class, model equivalence implies
bisimulation – which, for the case of PML, coincides with equality. However,
model equivalence is not enough to ensure equality in infinite models. To see
why, consider the model M1 = { vi | i ∈ N, vi(pj) = 1 iff 0 ≤ j ≤ i }, and
M2 = M1 ∪ {v} with v(pj) = 1 for all j ∈ N. Clearly M1 6= M2 but when
restricted to a finite number of propositional symbols they coincide (i.e., they
satisfy the same formulas of PML). Hence M1, v1 ≡M2, v1.
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Complexity. Finally, we characterize the complexity of checking pivotal con-
sequence by using known complexity results for PAL [13]. To the best of our
knowledge, Thm. 4 establishes the exact complexity of pivotal consequence for
the first time.

Theorem 4. Deciding {ϕ} `P ψ is coNP-complete.

Proof. coNP-hardness is clear by the coNP-hardness of checking consequence
in CPL. Thm. 2 shows that {ϕ} `P ψ is equivalent to {ϕ} �P ψ, which (by
Def. 15) is the case iff there is a sequence ρ̄ of pivotal rules in P s.t. [ϕ]ρ̄ψ
is a validity in PML. We know that PML is just a notational variant of single
agent PAL. This means that the results of [13] apply to PML. Then, there is
a polynomial satisfiability preserving translation (for S5-models) T of formu-
las from PML into the basic modal language (i.e., formulas without the [_]_
modality). As a consequence of the results in [13], checking satisfiability of a
PML-formula is NP-complete. This means that, given {ϕ} `P ψ, we can guess a
witness (ρ̄,M, w) polynomial in (ϕ,ψ, P ) such that M, w 6
 T ([ϕ]ρ̄ψ). It is easy
to check, in polynomial time, that (ρ̄,M, w) is a proper witness:

1. ρ̄ should be a sequence, without repetitions, in P ∗;
2. M, w should be an S5-model that satisfies ¬T ([ϕ]ρ̄ψ).

Since satisfiability is NP-complete, deciding {ϕ} `P ψ is coNP-complete.

4.2 Credulous Consequence in PAL

Having dealt with pivotal consequence, we turn our attention to dealing with
credulous consequence from a semantic perspective. At this point we fully exploit
and take advantage of the expressive power of the modalities of PML.

The key idea is to use the existential modality E to capture the consistency
constraint on the use of pivotal rules. We make this precise in Prop. 10 below.

Proposition 10. For all {ϕ,ψ} ⊆ Form0, � [ϕ]Eψ implies {ϕ} 6�CPL ¬ψ.

It is worth mentioning that the converse of Prop. 10 fails to hold in general.
To see why, notice that, e.g., 6�CPL ¬p but 2 [>]Ep. That 6�CPL ¬p is obvious.
We build a witness for 2 [>]Ep by taking M to be a pivotal model comprised
of a single v ∈ {0, 1}Prop s.t. v(p) = 0. Clearly, M, v 1 [>]Ep. So, 2 [>]Ep.
This example brings to the surface why the converse of Prop. 10 may fail to
hold in general: pivotal models, when seen as sets of CPL-assignments, do not
necessarily include all CPL-counter-models. In the particular case of the example,
M does not contain at least one CPL-assignment v′ s.t. v′(p) = 1. The point to be
made is: the consistency check that we are after requires us not to miss relevant
CPL-assignments. We overcome this issue by restricting our attention to a very
particular pivotal model –introduced below.

Definition 17. Let MCPL = {0, 1}Prop, i.e., MCPL contains all CPL-assignments.



12 Areces, Cassano, Fervari

The converse of Prop. 10 holds immediately in MCPL.

Proposition 11. For all {ϕ,ψ} ⊆ Form0, {ϕ} 6�CPL ¬ψ implies MCPL 
 [ϕ]Eψ.

Let us now turn our attention onto how to use Def. 14 to mimic the effect of
a single credulous P -detachment step.

Proposition 12. Let (π/χ) be a pivotal rule, ϕ and ψ be CPL-formulas; then:
� [ϕ](π ∧ Eχ/χ)ψ implies {ϕ} �CPL π, {ϕ} 6�CPL ¬χ, and {ϕ, χ} �CPL ψ.

Proof. Suppose that � [ϕ](π ∧ Eχ/χ)ψ. By definition, � [ϕ](π ∧ Eχ ∧ [χ]ψ). It
follows that: (a) � [ϕ]π; (b) � [ϕ]Eχ; and (c) � [ϕ][χ]ψ. We obtain {ϕ} �CPL π
using (a) and Item 2 in Prop. 6. We obtain {ϕ} 6�CPL ¬χ using (b) and Prop. 10.
We obtain {ϕ, χ} �CPL ψ using (c) and Items 1 and 3 in Prop. 6.

Notice that � [ϕ](π ∧ Eχ/χ)ψ does not imply {ϕ} � χ. The condition Eχ
is sufficiently strong to guarantee a consistency check in CPL, but not strong
enough to warrant consequence in CPL. Unsurprisingly, as with Prop. 11, the
converse of Prop. 12 does not hold in general, but it does over MCPL.

Proposition 13. Let (π/χ) be a pivotal rule, ϕ and ψ be CPL-formulas; then:
{ϕ} �CPL π, {ϕ} 6�CPL ¬χ, and {ϕ, χ} �CPL ψ iff MCPL 
 [ϕ](π ∧ Eχ/χ)ψ.

Proof. Right to left: Immediate from Prop. 12. Left to right: We prove the
contrapositive, i.e., MCPL 1 [ϕ](π ∧ Eχ/χ)ψ implies (a) {ϕ} 6�CPL π or (b)
{ϕ} �CPL ¬χ or (c) {ϕ, χ} 6�CPL ψ. Suppose MCPL 1 [ϕ](π ∧ Eχ/χ)ψ; by def-
inition MCPL 1 [ϕ](π ∧ Eχ ∧ [χ]ψ). It follows that either (a’) MCPL 1 [ϕ]π; or
(b’) MCPL 1 [ϕ]Eχ; or (c’) MCPL 1 [ϕ][χ]ψ. We obtain (a) and (c) using (a’) and
(c’), and Prop. 6. We obtain (b) using the contrapositve of Prop. 11.

We have used (π ∧ Eχ/χ)ψ to capture the effect of a single credulous P -
detachment step in semantic terms. To be able to compose the effect of successive
credulous P -detachment steps at the level of models we revise Prop. 8.

Definition 18. Let ρ̄ = ρ1 . . . ρn be a sequence of pivotal rules, where each ρi
is of the form (πi/χi); define ρ̄c = (π1 ∧ Eχ1/χ1) . . . (πn ∧ Eχn/χn).

Proposition 14. Let ρ̄ = ρ1 . . . ρn be a sequence of pivotal rules; and ϕ, ψ be
CPL-formulas. It follows that MCPL 
 [ϕ]ρ̄cψ is equivalent to
{ϕ} ∪X �CPL ψ, and

for all 1 ≤ i ≤ n, {ϕ} ∪X(i−1) �CPL πi and {ϕ} ∪X(i−1) 2CPL ¬χi,
where: ρi = (πi/χi); Xj = {χ1, . . . , χj}; and X = Xn.

Def. 19 allows us to formulate credulous consequence using announcements.

Definition 19. Let P be a set of pivotal rules, and ϕ and ψ be CPL-formulas;
define {ϕ} |≈P ψ iff exists a sequence ρ̄ of pivotal rules in P s.t. MCPL 
 [ϕ]ρ̄cψ.
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Thm. 5 establishes the parallel between |∼P and |≈P . Its proof follows from
Props. 4 and 14 and Thm. 1.

Theorem 5. Let P be a set of pivotal rules, ϕ and ψ be CPL-formulas; then:
{ϕ} |∼P ψ iff {ϕ} |≈P ψ.

Thm. 5 tells us that ψ is a credulous consequence of ϕ given P iff [ϕ]ρ̄cψ
holds everywhere in MCPL. In this way, Thm. 5 reduces witnessing credulous
consequence to a model checking problem in a particular pivotal model.

Transfer Results. We finish this section discussing some transference results
that can be obtained by virtue of Thm. 5.

Axiom System. We begin with a discussion on the axiomatization of |∼P . Given
Thm. 5, we would need for PML formulas to be evaluated in MCPL. This makes
the axiom system in Tab. 1 insufficient. However, it is not a major obstacle. Let
us make an abuse of notation and write MCPL for the class of models containing
solelyMCPL. The sole model inMCPL is needed to capture the “consistency check”
required in the credulous use of pivotal rules. MCPL is characterized in Def. 20.

Definition 20. Let P = {p1, . . . , pn} and Q = {q1, . . . , qm} be finite subsets of
Prop s.t. P ∩ Q = ∅; define Val(P,Q) = E((p1 ∧ · · · ∧ pn) ∧ (¬q1 ∧ · · · ∧ ¬qm)).
Moreover, define VAL as the set of all Val(P,Q).

Theorem 6. The axioms and rules in Tab. 1 plus VAL yield a sound and com-
plete axiom system for PML over the class MCPL.

Complexity. Our last result concerns complexity of deciding default consequence.
We provide an upper bound, whose proof relies on the model checking problem
for modal logic with the particular model MCPL.

Similarly to the case of pivotal consequence, we use Thm. 5, i.e., {ϕ} |∼P ψ is
equivalent to {ϕ} |≈P ψ, which is the case (from Def. 19) iff there is a sequence ρ̄
of pivotal rules in P s.t. MCPL 
 [ϕ]ρ̄cψ. On a first attempt, we could try to use
the same strategy employed in Thm. 4, i.e., guess a polynomial witness (ρ̄,M, w).
However, notice that, for credulous consequence, M cannot be an arbitrary S5-
model –since we need to check the satisfiability of [ϕ]ρ̄cψ in MCPL (of course,
we can use MCPL restricted to the signature of [ϕ]ρ̄cψ, which is finite, but not
polynomial in the input). If we guess an arbitrary polynomial S5-model M, it is
unclear how we can check in polynomial time that it is a proper witness (and
the results in [12], see below, imply that being able to do so would result in a
collapse of the polynomial hierarchy). In spite of these issues, we can directly
establish a PSpace upper bound.

Theorem 7. Deciding {ϕ} |∼P ψ is in PSpace.



14 Areces, Cassano, Fervari

Proof. We only need to show that it is possible to model check [ϕ]ρ̄cψ in MCPL,
on the fly, using only polynomial space.

Because PSpace = NPSpace we can, non-deterministically, model check [ϕ]ρ̄cψ
for a particular, arbitrary, ρ̄. The following algorithm A(ϕ) checks that an arbi-
trary PML-formula ϕ holds in the restriction of MCPL to the signature of ϕ in
polynomial space.

Let ϕ be a PML-formula, and i be the largest index s.t. pi appears in ϕ. Let
v1, . . . , v2i be an enumeration of all the possible assignments over p1, . . . , pi, and
assume that numbers are represented in binary. Let

A(ϕ) := for k = 1 to 2i do F (ϕ, k, {1, . . . , 2i});

where F (ψ, k, S) is defined recursively as follows:

1. if ψ = ⊥ then return False;
2. if ψ = pj then return vk(pj) = 1;
3. if ψ = α→ β then return not F (α, k, S) or F (β, k, S);
4. if ψ = Aα then

for j ∈ S do
if not F (α, j, S) then return False;

return True;
5. if ψ = [α]β then

if not F (α, k, S) then return True;
S′ = {j | F (α, j, S)};
return F (β, k, S′);

Remark 2. The complexity of reasoning in different non-monotonic logics has
been investigated in [12]. In particular, [12] shows that the problem of deciding
credulous consequence is ΣP

2 -complete. Such a result is exact; and, thus, it is
stricter than ours. Nonetheless, we believe that Thm. 7 gives a simpler proof of
a reasonable small upper bound via a transfer result.

5 Final Remarks

We presented a semantic exploration of the concept of PRC proposed in [14,15]
using the standard semantic machinery of PAL. In doing this, we connected PRC
and PAL. In more detail, we obtained characterization results of PRC and cred-
ulous consequence in PAL. These characterization results led to natural axiom-
atizations and completeness results. Moreover, they led to transference results
of expressivity and complexity. Interestingly, in our framework, credulous con-
sequence turns out to be a model checking problem.

Our main results are Thms. 2 and 5. These can be seen as completeness results
that show that the semantics of (a clearly defined fragment of) PAL captures PRC
and credulous consequence. When seen in this light our work complements the
picture presented in [14,15], where these notions are defined as closure operators
on sets of formulas.



Non-monotonic Reasoning via Dynamic Consequence 15

We consider our work a first step towards studying different notions of non-
monotonic consequence from a dynamic logic perspective. The results in [14,15]
are not restricted to PRC, they show other ways of building bridges from classical
to non-monotonic logic. We would also like to explore these other bridges in our
setting. Moreover, it would be interesting to generalize the notion of PRC to
logics more expressive than CPL, e.g., modal logics, and to study whether or not
we need to extend PAL to characterize these logics.

Our work also opens up the door to explore the use of reasoning methods
from modal logic, i.e., tableaux systems and model checkers, in the setting of
PRC and in Default Logic. Modal logics boast a trove of automated tools and
techniques which could now be applied to non-monotonic reasoning.
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