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Abstract

Default Logic refers to a family of non-monotonic formalisms. Tradi-
tionally, default logics have been defined and dealt with via syntactic no-
tions of consequence, in general, in propositional logic or first-order logic.
Here, we build default logics on modal logics. First, we present these de-
fault logics syntactically. Then, we elaborate on an algebraic counterpart.
We do the latter by extending the notion of a modal algebra to acommo-
date for the main elements of default logics: defaults and extensions. Our
algebraic treatment of default logics concludes with an algebraic complete-
ness result and a way of comparing default logics borrowing ideas from the
concept of bisimulation in modal logic. To our knowledge, our approach
is novel. Interestingly, it also lays the groundwork for studying default
logics from a dynamic logic perspective.

1 Introduction

Default Logic refers to a family of non-monotonic formalisms with two main
capabilities: reasoning with incomplete knowledge, and dealing with contradic-
tory information. The first of these capabilities is handled by so-called defaults.
Defaults are non-admissible rules of inference whose conclusions are subject to
annulment. Intuitively, defaults handle reasoning with incomplete knowledge
by drawing conclusions which complete what is unknown. The second of these
capabilities is handled by so-called extensions. Extensions can be understood
as sets of formulas closed under the application of defaults. Intuitively, exten-
sions handle reasoning in the presence of contradictory information by exploring
consistent alternatives.

The history of Default Logic traces back to Reiter’s seminal work [25]. Since
then, many variants of Reiter’s original ideas have been proposed — with each
variant giving rise to a different default logic (see [3] for a comprehensive sum-
mary). For the most part, these variants have focused their attention on what
is meant by an extension. In particular, the emphasis has been on how differ-
ent interactions between defaults, and the rules of inference of the underlying
proof calculus, concoct different notions of an extension satisfying one or more



properties of interest. This treatment of extensions carries with it the definition
and analysis of a default logic from a syntactic perspective. However, the other
side of the coin is missing. In studying a logic (of any kind), we also wish to
address it from a semantic perspective, either via a model theory or via a class
of algebras. The semantic perspective yields interesting completeness results,
interpolation properties, bisimulations, etc. Semantic considerations on default
logics are mostly absent, making it difficult to investigate their logical properties
using standard semantic tools.

Our work. Following the tradition in Default Logic, we start with a for-
mulation of default logics over modal logics via deducibility (i.e., syntactical
consequence in the proof calculus). We rely on the notion of global deducibility
for modal logics [14]. Our formulation of a default logic is parametric, and can
be instantiated with any modal system from K to S5 extended with the universal
modality [5]. As we will see, the use of the universal modality is not arbitrary
but a necessary tool which simplifies the treatment of defaults and extensions
in an algebraic setting. For each of our default logics, we make explicit how
defaults interact with the rules of inference of the underlying proof calculus.
We do this by integrating the use of the former into the notion of deducibility
of the latter.

In addition, we explore our default logics from an algebraic perspective.
We do this by extending modal algebras to accommodate for defaults and ex-
tensions. Modal algebras are Boolean algebras extended with additional op-
erators for modalities, and they make up the algebraic counterpart of modal
systems [32, 16]. Defaults and extensions are incorporated into this setting tak-
ing Lindenbaum-Tarski constructions as a starting point. Lindenbaum-Tarski
constructions act as algebraic canonical models for sets of permisses. We enrich
these constructions with an operator to deal with defaults. This operator can be
thought of as “updating” the Lindenbaum-Tarski algebra w.r.t. the application
of a default. The result of an update is the algebraic counterpart of an exten-
sion. Our algebraic treatment of default logics sets the context to obtain an
algebraic completeness result. Moreover, it gives us a way of comparing default
logics borrowing ideas from the concept of bisimulation in modal logic.

Related work. Our treatment of defaults and extensions enables us to think
of default logics as algebraic “model changing” logics; in the sense of, e.g., public
announcement logic [24]. In our case, a model update corresponds to the appli-
cation of a default (a sort of inference step). The idea of updating a model dy-
namically to represent syntactic steps of inference can be found in several places
in the literature on dynamic logics. For instance, the problem of logical omni-
science in epistemic logic (see, e.g., [30]) has been thought of as a property to
be achieved after the application of a dynamic operation. In [11, 1, 21, 26|, om-
niscience is achieved by updating models containing sets of formulas. In [29, 19]
the updates are performed over awareness relational models. Dynamics of evi-
dence are presented in [28, 31] over neighbourhood models. Finally, dynamic
modalities allowing to achieve introspective states over Kripke models are in-
troduced in [12, 13].

Closer to our work is the algebraic treatment of public announcements in-
troduced in [23]. Therein, the algebraic submodel relation induced by the an-



nouncement of a formula 1) is represented by taking the quotient algebra modulo
an equivalence relation given by 1. We show that the application of a default
0 can be captured in a similar way, i.e., by taking the quotient algebra modulo
the equivalence relation given by the new knowledge added by §. We elaborate
on this idea in Sec. 4.

Motivation. Our choice of building default logics on modal logics is grounded
on the fact that modal logics provide a wide spectrum of logics which are more
expressive than propositional logic, but which also have better computational
properties than first-order logic. Modal logics also have a well-developed alge-
braic theory in terms of modal algebras. In our constructions we exploit the
combination of these two features. As it turns out, defaults are better modeled
by means of a global consequence relation, which we capture internally using the
universal modality. While we do not pursue it here, default logics built on modal
logics is interesting from the perspective of applying the developed formalism to
particular scenarios. This is particularly true in the setting of description logics
— where it is possible to think of defaults as a way of capturing exceptions to a
taxonomy of concepts modeled in a knowledge base (see [4]).

Main contributions. We offer a syntactic and an algebraic treatment of
default logics built over modal logics and study their properties. Syntactically,
the construction of a default logic over a modal logic results in what we refer
to as default modal system. These default sysmtes are parametric on a modal
system and a set of defaults. We show how defaults interact with the rules
of inference of the underlying modal system by providing a suitable notion of
deduction by default. Algebraically, we recast defaults and extensions in the
setting of modal algebras. This enables us to obtain a completeness result for
default modal systems using standard algebraic tools. Dealing with defaults
and extensions in the setting of modal algebras opens the door to the study
metalogical properties of default modal systems from a algebraic perspective,
and can be seen as a first step towards an algebraization of default logics.

The contributions thus far mentioned extend the ideas and results intro-
duced in [9]. We include examples to illustrate and clarify some important
concepts and definitions. We also provide detailed proofs of results. Examples
and detailed proofs had been ommitted from [9] due to reasons of space. As
a completely novel result, we present a notion of bisimulation which allows to
characterize the expressivity of a default modal system. We consider this result
to be a substantial contribution. Our notion of bisimulation builds on the notion
of bisimulation of the underlying modal system. Bisimulations are the de-facto
way of proving semantic equivalences in Modal Logic. Our results show that
bisimulations can also be used to compare default modal systems. We elaborate
on a application of these results to the problem of equivalence of default theories.
Our notion of bisimulation gains interest since, as it is usual with bisimulations,
we only need to inspect properties that are relative to particular points. This
in contrast to other procedures used to compare default theories which examine
complete entities (see e.g., [27, 20]).

We conclude by discussing how recasting defaults and extensions in the set-
ting of modal algebras lays the groundwork to study default systems from a
dynamic logic perspective.



Structure of the article. Sec. 2 covers background material, in particular
concerning Boolean algebras, modal systems, and the algebraization of modal
systems. Sec. 3 contains our main results. Sec. 3.1 introduces default modal
systems. Sec. 3.2 presents default deducibility. Sec. 3.3 provides our alge-
braic characterization of defaults and extensions, and a completeness theorem.
Sec. 3.4 contains novel ideas and results. Therein, we study some properties of
default systems using bisimulations, and discuss an application for comparing
so-called default theories. In Sec. 4 we discuss default modal systems from a
dynamic logic perspective. Sec. 5 offers some final remarks.

2 Background

2.1 Boolean Algebra in a Nutshell
We briefly introduce the basics of Boolean algebras (see, e.g., [17] for details).

Definition 2.1. A Boolean Algebra (BA) is a structure A = (A, *, —, 1) of type
2—1-0 satisfying a well-known set of equations. The set A is also denoted as
|A|. We consider operations 4+ and 0 defined as a + b = —(—a*—b), and 0 = —1.

Definition 2.2. Every BA A is equipped with a partial order <A defined as
x <A y iff x = x xy (sometimes we omit the subindex A and write just <).
We write 1X = {y | thereis x € X s.t. x <y }. A filter is a non-empty subset
F CJA|st: F=1F and for all z,y € F, (x xy) € F. A filter is principal if it
is of the form t{a} for a € |A|. A filter F' is proper if 0 ¢ F.

2.2 Modal Systems
We begin by making precise the set Form of well formed formulas we work with.

Definition 2.3. Let Prop = {p; | ¢ € N} be a denumerable set of proposition
symbols; the set Form of well formed formulas (wffs, or simply formulas) is
determined by the grammar

o0 u=pi | T [ 2@ | oAy |DOp|Te.
We use the usual abbreviations: L, o V¥, o — ¢, p < ¢, O and @p.

The set Form can be seen as an enrichment of the basic modal language with
the universal modality @. We use the universal modality as a technical tool to
internalize a global consequence relation.

By a modal system we mean any of those arising from Def. 2.4.

Definition 2.4. A modal system is fully determined by a set of wifs called
axioms, and the rules of inference of modus ponens (mp) and universal general-
ization (u) below:

I ¢

£ (mp) = ().
The smallest set of axioms we consider consists solely of all instances of propo-
sitional tautologies and all instances of the schemas:

1. O(p = ¥) = (Op — OY); 3. @y — ¢; 5. mp — muep;
2. mip =) — (@p — Wy); 4. p — mOy; 6. @ — Oep.



The previous axioms and rules of inference give rise to the modal system K®.
The modal system K is the most basic modal system we will consider. The rest
of the modal systems we consider are obtained from it by adding as additional
axioms all instances of any of the schemas below, or any combination thereof:

) op—-oop 5)Ce—=00p (B)p—=00p D)oy =< (T)Op — ¢

E.g., the modal system D® has as axioms all axioms of K®, plus all instances
of the schema D. Similarly, the modal systems S4” and S5¥ have as axioms those
of KB, plus all instances of the schemas T and 4, and T and 5, respectively.

For each modal system, we define a deducibility, i.e., syntactic consequence,
relation between sets of formulas and formulas. This relation is given in Def. 2.5.

Definition 2.5. Let M® be a modal system; an M®-deduction of ¢ from ® is
a finite sequence v .. .1, of formulas such that i,, = ¢, and for each k < n at
least one of the following conditions hold:

1. 1)} is an axiom of M®;

2. i is a premiss, i.e., Y € P;

3. 1y is obtained using mp, i.e., there are i,j < k s.t. ¥; = 1); — ;3
4. 1)y is obtained using u, i.e., there is j < k s.t. ¥, = @Y;.

We write ® by @ iff there is an M¥-deduction of ¢ from ®. The relation Fye
is commonly referred to as global.

We end this section by taking note of the following properties of Fye.
Proposition 2.1. The following properties hold:

1. If Fye @, then, Fpys Op.

2. H ®U{p} Fms ¢, then, & Fys @ — .

The first item in Prop. 2.1 refers to the necessitation property in modal
logics, whereas the second item refers to a version of the deduction theorem.

2.3 Algebraizing Modal Systems

We present the semantics of a modal system from an algebraic perspective.
More precisely, we associate with each modal system a class of algebras in a
way such that the properties of the modal system are in correspondence to the
properties of the class of algebras. The algebraic treatment of modal systems is
instrumental to perform default reasoning from a semantic point of view, and
to viewing default reasoning as a logic of updates. We elaborate on these ideas
later on. For now, we focus on introducing some basic concepts and results of
the classes of algebras we will work with. To this end, we follow closely [32],
and borrow ideas and results from [16, 18].

Definition 2.6. The formula algebra associated to the set Form of formulas
is the structure F = (Form,A,—, T, 0, @) where: —, O, @ are seen as unary
operations, and A is seen as a binary operation. These operations are defined
in the ovbious way, i.e.: — applied to ¢ € Form returns —¢ € Form; O applied
to ¢ € Form returns Og € Form; @ applied to ¢ € Form returns @y € Form;
and A applied to ¢, € Form returns ¢ A ¢ € Form.



The standard algebraic treatment of Classical Propositional Logic refers to
Boolean algebras (as interpretation structures) and filters (as the semantic coun-
terpart of deducibility). The analogous concepts for the case of modal systems
are so-called @-modal algebras, and open filters, respectively.

Definition 2.7. A @-modal algebra is a structure M = (B,*,—, 1, f2, f®)
where: (B,#*,—,1) is a Boolean algebra; and f© and f® are unary operations
satisfying the following set of equations

P =1 fo(b1) < b
fP(b1 * ba) = f2(ba) * f7(D2) f2b) < O (=f2(=b1))
A =1 fob) < fO ()
(b1 % b2) = f2(by) * f¥(ba) f2(b1) < f7(by).

An open filter in M is a subset F' C B such that: F' is a filter in (B, x, —, 1),
and for all b € F, f2(b) € F.

Definition 2.8. An interpretation of the formula algebra F on a m-modal alge-
bra M = (B, *,—, 1, f9, f¥), a.k.a. an interpretation on M, is a homomorphism
v : F — M such that:

o(T) =1 v(=p) = —v(p) v(0p) = f7(v())
v(e Ap) = v(p) *v(1h) v(@p) = f2(v(p)).
Proposition 2.2. Every interpretation v on M is uniquely determined by an
assignment vg : Prop — |M].

Definition 2.9. Let M be a mw-modal algebra; we define:

1. an equation as a pair (¢, ) of formulas; written as ¢ ~ ;
2. an equation ¢ = 1 is valid under an interpretation v on M iff v(p) = v(¥);
3. an equation is valid in M iff it is valid under all interpretations on M.

We write M, v F ¢ = 9 iff the equation ¢ = v is valid under v; and M F ¢ ~ ¢
if the equation ¢ =2 ¢ is valid in M.

We are now in a position to connect @-modal algebras and modal systems.

Proposition 2.3. Let M® be a modal system, and ® U {, 1} a set of formulas;
define ¢ 25y ¥ iff @ Fyo @ > . The relation &3, is a congruence on F.

Definition 2.10. Let M® be a modal system, and ® be a set of formulas;
the M®-Lindenbaum-Tarski algebra, or M®-LT algebra, of ® is the structure
L¥s = (Form/ae %m0 —ao lae  f20 |, f2, ) where:

mE T Mo TMET T =yp T S

([plag,) = [¢l=e,  foa ([Plae,) = [O0]as
[‘P]%‘I’ o W’]f:“l’ = [‘P/\w]g‘l’m f‘P ([50}%‘1’@,) = [@Sﬁ}g‘l’ .

me me M il M me

The canonical interpretation v on Ly is defined as v(p) = [Pl .
M@

Proposition 2.4. Every M®-Lindenbaum-Tarski algebra is a @m-modal algebra.

Theorem 2.1. For every modal system M®, & by ¢ iff L‘,am ForT.



The algebraic completeness of a modal system M® w.r.t. a corresponding
subclass of @-modal algebras is obtained as a corollary of Thm. 2.1 by showing
that the MP-LT m-modal algebra belongs to the subclass. In this way, M®-LT
w-modal algebras act as “algebraic canonical models” for sets of formulas, i.e.,
they provide witnesses for ® Hys ¢. We make full use of, and benefit from,
ME-LT m-modal algebras in Sec. 3.3.

3 Default Modal Logic

In this section we integrate the main elements of Default Logic, defaults and
extensions, into modal systems. This integration yields what we call a default
modal system. For each default modal system, we introduce an associated no-
tion of deduction by default, which shows how defaults interact with the notion
of deduction for the underlying modal system. Moreover, we present how a
default modal system can be viewed from an algebraic perspective, and prove a
completeness result using algebraic tools. We also show how the algebraic set-
ting for default modal systems offers a natural way of comparing default logics
borrowing ideas from the concept of a bisimulation in modal logic. As some
final remarks, we discuss how the algebraic treatment of default modal systems
can be seen as an update operation on algebraic structures. This opens up the
door to thinking about default systems from a dynamic logic perspective (akin
to public announcements).

Remark 1. To avoid cluttering the notation with subscripts, in what follows, we
assume that M® is an arbitrary but fixed modal system and use - for Fye.

3.1 Default Modal Systems

We start by introducing defaults and extensions in Defs. 3.1 and 3.2, respectively.
These definitions are adapted from [25].

Definition 3.1. A default is a triple (7, p, x) of formulas written as w:p / x.
The formulas 7, p, and Yy, are called prerequisite, justification, and consequent.

Definition 3.2. Let ® be a set of formulas and A a set of defaults; define
a function DY s.t. for all sets of formulas ¥, DX (¥) is the C-smallest set of
formulas which satisfies:

(a) @ C DX(V);

(b) DR(¥) = {¢ | DX(¥) Fmo ¥ };
(c) forallm:p/x € A, if 7 € DR(V) and —p ¢ U, then, y € DR (V).

A set E of formulas is an extension of ® under A iff it is a fixed point of DY,
i.e., E=DX(E). We use EX to indicate the set of all extensions of ® under A.

In the literature on Default Logic, defaults are intuitively understood as de-
feasible rules of inference, i.e., rules of inference whose conclusions are subject to
annulment, or rules which allow us to “jump” to conclusions. In turn, extensions
can be thought of akin to theories generated by a set of formulas. In this light,
an extension is a set of formulas containing ®, closed under I, and saturated
under the application of the defaults in A. The next two examples illustrate
two properties of extensions: multiplicity and absence of extensions.



Ezample 1. In the context of the modal system K®, consider sets ® = {Cp}
and A = {Op: O—p / O-p,Op: Op / Op}; the set EX of extensions of ® under
A consists of exactly two extensions: (1) the set E1 = { ¢ | {Op, O—p} bk ¢ };
and (2) the set E; = { ¢ | {Op, Op} Fku ¢ }.

Each of the extensions in Ex. 1 corresponds to the application of each default
in A. Once one default has been applied, the application of the other one is
blocked. This example illustrates how to handle contradictory information in
Default Logic, i.e., via consistent alternatives.

Ezample 2. In the context of the modal system K¥, consider sets ® = {Op}
and A = {Op: ©q / O—q}; the set EX of extensions of ® under A is empty, i.e.,
E‘IA’ = (), i.e., there are no extensions of ® under A.

Ex. 2 highlights a subtletly in thinking of extensions as being constructed by
the successive application of defaults: applying a default may result in its own
annulment. To make this point clear, w.l.o.g., notice that plausible candidates
for extensions are: the set E; = {¢ | {Op} Fko ¢} (i-e., not applying the
default); or the set Eo = {¢ | {Op,0-¢} Fko ¢} (i.e., applying the default).
It can easily be verified that neither of these sets is a fixed point of DX. More
precisely, D% (E;) = Ez and D% (Es) = E;. This results in ES = 0.

The definition of a default modal system arises as a natural construction
over a modal system by incorporating defaults and extensions.

Definition 3.3. A default modal system is a tuple AM® = (M® A E) where:
M® is a modal system, A is a set of defaults, and E is a function s.t. for all sets
® of formulas returns EX.

In analogy with the case in modal systems, we associate with each default
modal system a relation bt between sets of formulas and formulas. This relation
is based on the relation - and it can be understood as its default version. This
is made clear in Def. 3.4.

Definition 3.4. Let AM® be a default modal system; define

® bame ¢ iff o € E for some E € EX.

We drop the subscript AM® when it can be understood from the context. We
use P ¢ as a shorthand for () ~ .

The relation b is called credulous in the literature on Default Logic. This
name is due to the fact that the existence of just one extension is enough to
grant the inference (see [3]). The principle of monotonicity fails for i. In other
words: it is not necessarily the case that if ® ¢, then DU U k .

Given that b is built on F, we may ask ourselves which properties of - are
preserved by F. This question does not have an obvious answer, e.g., mono-
tonicity is already not preserved. To this end, we introduce Def. 3.5 as a basis
on which to start properly frame this question.

Definition 3.5. The relation b interprets + iff if ® F ¢ then & b ¢.

Interpretability seems to be a natural requirement on . However, as es-
tablished in Ex. 2 (which shows that sometimes extensions do not exist) this
property fails to hold in general. To overcome this problem we can go down
two possible paths: (i) modify Def. 3.2 to guarantee the existence of extensions;



or (ii) single out defaults for which extensions are guaranteed to exist. Among
the most popular modifications of Def. 3.2 which guarantee the existence of
extensions we have: justified extensions (see [22]); and constrained extensions
(see [10]). For option (ii), we have the set of well-behaved! defaults as a very
large and natural set which guarantees the existence of extensions (see [25]).
Going down path (i) overburdens the definition of an extension with additional
machinery which departs from the purposes of our work here. For this reason,
we choose to go down path (ii); i.e., we restrict ourselves to well-behaved de-
faults. Interestingly enough, extensions, justified extensions, and constrained
extensions, coincide for well-behaved defaults (see [15, §]).

Definition 3.6. A default 7:p / x is well-behaved iff p = x. We use 7/x as
notation for well-behaved defaults. A set of defaults A is well-behaved iff all
defaults in A are well-behaved. A default modal system is well-behaved iff its
set of defaults is well-behaved.

Proposition 3.1. In every well-behaved default modal system, b interprets .

Proof. Notice that ® C E for all E € EZ. The result follows immediately from
this and the fact that extensions are guaranteed to exist.

We conclude this section by drawing attention to an interesting point regard-
ing necessitation in default modal systems in Prop. 3.2 (cf. item 1 in Prop. 2.1).

Proposition 3.2. In any default modal system, if i ¢, then ~ Q.

Proof. Suppose that b ¢; by definition, there is an E € ER s.t. E - . It follows
that E - O¢. Thus, b Op.

Prop. 3.2 shows that necessitation is preserved by b. In turn, we may wonder
whether it is possible to obtain the form of the deduction theorem in Prop. 2.1
for b; i.e., whether if ® U {o} I 4, then, ®  mep — 1. Unfortunately, as the
next example shows, this property fails to hold for an arbitrary default modal
systems (even in the presense of m).

Ezample 3. In the context of the modal system K®, consider sets ® = {p} and
A = {p/Op}; then, EX = {{p, Op}} and EmA = {0}. Clearly, {p, Op} Fku Op and
Hke @mp — Op. This means that {p} Fake Op and also that Yake mp — Op.

3.2 Deducibility in Default Modal Systems

We formulate a notion of deduction by default, or default deduction, for an arbi-
trary but fixed well-behaved default modal system. This notion of a deduction
by default extends that of a deduction by incorporating defaults in a natural
way.

Definition 3.7. A deduction by default, or default deduction, of ¢ from ® is a
finite sequence 1, ..., of formulas s.t. 1, = ¢, and for each k < n at least
one of the following conditions hold:

1. 9y is a theorem of F, i.e., - ¢y;
2. 1 is a premiss, i.e., Y € P;

Hn the literature on Default Logic well-behaved defaults are called normal. We avoid using
this terminology here to avoid any confusion with normality in Modal Logic.



3. 1y is obtained using mp, i.e., there are i,j < k s.t. ¥; = 1); — ;3
4. 1y, is obtained using u, i.e., there is j < k s.t. ¢, = @Y;;
5. 1y, is obtained using A-detachment, i.e., there is j < k s.t. ¥; /¢y, € A.

A default deduction is credulous whenever:
(PU{y;|1<i<n})kFL iff ®F L. (1)
We write @ ~* ¢ iff there is a credulous default deduction of ¢ from .

The notion of a credulous default deduction extends the notion of deduction
in the underlying modal system with a rule of default detachment and the condi-
tion of being credulous. The rule of default detachment enables us to introduce
defaults in the reasoning task and shows us how defaults interact with the rules
of the underlying proof system. The condition of being credulous in Eq. (1)
captures the fact that defaults cannot be a source of inconsistency. Intuitively,
a credulous default deduction of ¢ from ® internalizes the construction of (part
of) an extension containing ¢ together with the deduction which witnesses this
containment. This is made precise in the following result.

Theorem 3.1. For any set of formulas ® U {¢}, & ~* ¢ iff & I~ .

Proof. W.l.o.g. we prove the result for ® t/ 1. To simplify the proof, we use an
alternative characterization of extensions in terms of closed generating sequences
(which adapts a definition of a closed process in [2]).

By a A-sequence we mean a (potentially infinite) sequence § = 010203 . ..
of defaults of A. The following notation is useful: (a) 8|, = d1...d,; (b)
§; = mi/xs; and (¢) X5 = {x; | m/xi € }. A A-sequence § is called generating
iff for all indices i of 0: (d) ® UX Gl - ™ and (e) (@ UX(Slqz)) ¥l A
generating A-sequence is closed iff it is not a strict initial segment of any other
generating A-sequence. Extensions and generating A-sequences are related as
follows: E € EX iff exists a generating A-sequence 6 s.t. E = {e | (PUX;) ¢ }.
The proof of this fact can be obtained by adapting the one presented in [2].

Turning to the proof of Thm. 3.1, we first prove that if ® r ¢, then ® ~* .
Suppose that for a generating A-sequence §, ® U X5 - ¢. From compactness for
I, we obtain that for some index n of §, ® U X5, F - We convert a deduction
of ¢ from ® UX5 ) into a default deduction of ¢ from @ in the following way.
For each x; € X(g‘n), there is §; = m;/x; € 5\n; and so, there is a deduction @[_Jm.
of m; from ® U X(g‘(i_l)). Construct a sequence 15(5“) =r, .- Ux, . Let ¥ be a
deduction of ¢ from ® UX 5 ; the sequence ¢/ = v 11 is a finite sequence
of formulas which is, by construction, a default deduction of ¢ from ®. It can
easily be seen that 1)’ is also credulous. Thus, if ® b ¢, then ® ~* .

To prove that if ® ~* ¢, then ® P~ ¢, we assume that ¢ is a credulous
default deduction of ¢ from ®. Let § be the A-sequence of defaults used in 1),
i.e., those collected via default detachment; ¢ is, by construction, a generating
A-sequence. It can be proven that ¢ can be extended to a generating A-sequence
&' that is closed (see [3]). From this fact, the set E = {e | (® UXj) Fme e} is
an extension. Immediately, ¢ € E; and so ® b~ . Thus, if ® ~* ¢, then ® b .

In light of Thm. 3.1, we use i and r* interchangeably.

10



3.3 Default Modal Systems Through an Algebraic Lens

We now turn our attention to viewing defaults and extensions in the setting of
w-modal algebras. More precisely, we will focus on Lindenbaum-Tarski @-modal
algebras. This view reveals how default modal systems may be thought of as
systems with the ability of performing dynamic updates over a structure.

Remark 2. For the rest of this section, we assume AM® = (M® AE) is an
arbitary but fixed well-behaved default modal system. To simplify notation, we
drop AM® and M® as sub-scripts. Moreover, we write @, ¢ instead of ® U {¢}.

We construct this section around the following definition.

Definition 3.8. Let £ = {L® | ® C Form }; for every default § = 7/x € A;
define a function § : £ — £ s.t.:

5L = {L i [r)o = 1o and 0 ¢ (@]} (2a)
L® otherwise. (2b)

Def. 3.8 captures the effect of applying a default from an algebraic perspec-
tive. More precisely, applying a default 6 = 7/y w.r.t. a set ® of formulas
yields the set ®, x of formulas. The default is applicable iff: (a) ® F m; and
(b) @, x I/ L. In algebraic terms, we capture the application of a default as a
transformation between LT @-modal algebras. More precisely, consider the LT
@-modal algebra for a set ® of formulas L®. The condition (a) of applicability
of § = n/x w.r.t. L? is captured in (2a) as [r]e = lg; and the condition (b) of
applicability is captured in (2a) as 0p ¢ T{[@x]s}. In other words, the equiva-
lence class of 1¢ captures the deducibility of 7 from ®. In turn, the condition
of being proper on the (open) filter generated by [@Wx]|e captures the consistency
of x w.r.t. ®. Notice that if the default is applicable, the return value of 5
ie., L®X, is tantamount to incorporating x to ®. Contrariwise, i.e., if § is not
apphcable 4 has no effect on L*. When seen in this light, the operator 6 per-
forms an update reflecting the application of ¢ on its input. The situation here is
similar to the case in logics of updates such as Public Announcement Logic [24]
(in particular, in relation to the approach proposed in [23]). We retake this
discussion in Sec. 4.

Having looked at the effect of defaults from an algebraic perspective, we turn
our attention to constructing extensions. For well-behaved defaults, extensions
can be seen as being constructed in a step-wise fashion applying defaults one at
a time. From a syntactic perspective, this construction of an extension starts
with a closed set ®, and applies the defaults § € A one by one until we obtain a
closed set of formulas that is saturated under the application of defaults. From
the perspective of LT m-modal algebras we obtain the following.

Proposition 3.3. Each function § induces a function & : |L| — |§(L)| defined
as: 0([¢le) = [¢lo,y if Eq. (2a) holds; or 5([ lo) = [¢]e if Eq. (2b) holds. The
function 4 is a homomorphism from L to 6(L).

Proof. That § is a function is trivial. The proof that ¢ is a homomorphism is by
cases. If Eq. (2b) holds, then, the result is obtained immediately. Otherwise:

3(f5([ele)) = 0([0¥le) = [O¢)en = f5x([Plon) =[5, (0([e]e))-

The remaining cases are similar.
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The following are some immediate properties of default operators.

Definition 3.9. Let L, Lo € £; we write L < Ly iff there is a homomorphism
h:L; — Lo; and Ly < Ly iff L; < Ly and Ly, Lo are not isomorphic.

Proposition 3.4. Every § is extensive and idempotent, i.e., it satisfies L < S(L)
and 0(L) = 6(0(L)), respectively. An arbitrary ¢ needs not satisfy monotonicity,
i.e., there are § = 7/x s.t. L1 <Ly and 0(L;) % 0(L2).

Proof. Extensivity follows from Prop. 3.3. Idempotence is proven by cases. If
Eq. (2b) holds, then, the result is obtained immediately. Otherwise, Eq. (2a)
holds. In this case, §(L®) = L®X. Trivially, §(L®X) = L®X. For a counter-
example to monotonicity, consider LT m-modal algebras L&m and L&p }and a
default § = T/O—p. Obviously, L& < L{Kp ' However, there is no homomor-
phism from S(L&) to S(L{Kp}).

Any set A of well-behaved defaults leads naturally to a set {6]6eA}.
Each § in this set can be seen as “taking a step” in the construction of the
algebraic counterpart of an extension. To carry out this construction in its

entirety, we would need to compose such steps. This leads to the formulation
of Def. 3.10.

Definition 3.10. Let D be the monoid freely generated by {0 | § € A}, i.e.,
D = (D, —;—,id) where:
1. D is the C-smallest set s.t.:
(a) {0:£— L[5 A} CD;
(b) id: £ — £ € D; and
(c) if {d1: £ — £,dy: £ — £} CD, then (dy;ds) : £ — £ € D;
2. id and —;— satisfy: id(L) = L; and (dy;d2)(L) = da(dy (L)).
We refer to D as the default monoid (associated to the default modal system).

Proposition 3.5. Every d € |D| is either: the identity, i.e., d = id; or a

composition of the form d = (81; ...30p), where §; € A.

Definition 3.11. Let D be a default monoid, L be a LT w-modal algebra, and
v be an assignment on L; for every equation ¢ = 1, define:

Livkepxy iff d(L),(vid)E ¢~ for some d € |D|.

where id([¢]e) = [¢le; and (31;...:0,) = (81;...:0,). We write L k ¢~ 1)
iff L,v k ¢ &1 for all assignments v on L. Moreover, we write k ¢ = 1) iff
L k¢ = 9 for all LT @-modal algebras L.

Intuitively, the LT @-modal algebra d(L) in Def. 3.11 is the algebraic version
of the concept of an extension. This is made clear in Thm. 3.2.

Theorem 3.2. For all sets of formulas ®, ¢, we have ® b o iff L* k o~ T.

Proof. The interesting part is the right-to-left implication: if L® k ¢ ~ T, then,
® b . We prove the contrapositive: if ® § ¢, then, L® ¥ o ~ T.
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Let ® ¥ ¢, the proof is concluded if for all d € |D|, d(L®) ¥ o~ T. We
continue by induction on d.

Base case: let d = id; we must have id(L?) ¥ ¢ ~ T; otherwise we would
obtain ® F ¢ (from Thm. 2.1); and so that ® b ¢ (which contradicts our
assumption).

Base case: let d = 6 for § = 7/x € A; either Eq. (2b) holds or Eq. (2a)
holds. If Eq. (2b) holds, § behaves like id (and we are back to the previous
case). If Eq. (2a) holds, §(L®) = L®X. Assuming (i) L®X E ¢ ~ T leads to
a contradiction. More precisely, if Eq. (2a) holds, from Thm. 2.1, we obtain
® 7 and ®,x I/ L. From (i) and Thm. 2.1, we obtain ®,x b . If we place
the deduction of 7 from ® in front of the deduction of ¢ from @, x, we obtain
a default deduction of ¢ from ®. This yields a contradiction.

Inductive case: let d = (51; . ;Sn;g(nﬂ)). If (31; . ;&J(Lq’) = L%, from
the inductive hypothesis, we obtain L® ¥ ¢ ~ T. Assuming that S(n_H)(L‘I’/) E
© = 1 leads to a contradiction using the same argument as in (i).

We conclude this section by taking some steps beyond dealing with defaults
and extensions in the context of LT m-modal algebras. In particular, we show
how some of the constructions used in Sec. 3.3 can be extended to a more
abstract setting via suitable congruences.

Definition 3.12. Let L® be a Lindenbaum-Tarski @-modal algebra and y a
formula; define [1]e =y [@2]o Iff [01]e *o [@X]e = [p2]e *o [@X]a.

Def. 3.12 is a step towards treating the application of default as a device
for obtaining a @-modal algebra M updated by the element [y]e in L®. The
updated @-modal algebra M is meant to be obtained as a quotient algebra
modulo the congruence =,. Prop. 3.6 shows that =, indeed is a congruence.

Proposition 3.6. The relation =, is a congruence on L®.

Proof. That =, is an equivalence relation is immediate. To improve notation we
drop the subscript . We need to show that: if [¢1] =, [¢2] and [¢3] =, [¢4],
then, [o1] * [s] =y [@2] * [pa]; —le1] =y —lpal; f2([en]) =5 f7([2]); and
F2([¢1]) =x f2([p2])- The proof continues by cases (we only show the cases f“
and f®, the rest are routine):

f([p1]) * [@x] f2([p1]) * [@x]
> P[] * [m@x]) = [@x] = [%([¢1]) * [wmx]
= [ ([p2] * [@x]) * [@x] = [2([p1]) * f2([@mx])
= [ ([p2]) * (f2([@mx]) * [@x]) = fP([¢1] * [@x])
> [P ([w2]) * [@mx] = f2([ep2] * [mx])
= f2([2]) * f2([@mx])
= [([p2]) * [mmx]
= [([p2]) * [@x]

Proposition 3.7. The quotient algebra Lé/zx is isomorphic to L®:X,

Proof. Observe that @,y b (¢1 <> ¢2) it ®F (o1 Ay <> o2 Amy). The iso-
morphism between L%/ =, and L®X is given by mappings ¢; and ¢, defined as:

u(llvlel=,) = [¢lex; and wa([¢le,x) = [[¢la]=, -
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The isomorphism in Prop. 3.7 shows that the relation =, yields the “correct”
congruence if the application of a default is to be seen as updating a m-modal
algebra. Moreover, it is possible to define a function ¢ : L®/ = = L?® defined by
e([[¢]a]=,) = [¢lo*s[x]o. The image of ¢ is also isomorphic to L®X. The results
discussed in this paragraph open a pathway on how to lift the constructions in
Defs. 3.8 and 3.10 to the setting of arbitrary m-modal algebras and to connect
default modal systmes with logics of updates.

3.4 An Application of the Algebraic Framework

The results in Sec. 3.3 shows us how to deal with default modal systems using
algebraic tools. Interestingly, this enables us to formulate and obtain a com-
pleteness result using LT m-modal algebras. The algebraic machinery in Sec. 3.3
also opens a pathway to investigate other properties of default modal systems.
In particular, in this section, we show how the notion of bisimulation for modal
logics can be adapted and extended to enable us to compare default modal
systems.

We begin by recalling the standard definition of Kripke models, and the
semantics of modal formulas.

Definition 3.13. A frame is a tuple § = (W, R) where: W is a set of elements
(called worlds); and R C W?2 is the accessibility relation. A Kripke model is
a pair M = (F,V) where: § is a frame, and V : Prop — 2% is the valuation
function. For w € W, the pair 9, w is called a pointed model.

Definition 3.14. Let Mt = (W, R, V') be a Kripke model, w € W, and ¢ € Form;
the satisfiability relation 9, w I ¢ is defined according to the following rules:

M, w lk p; iff weV(p)

M, w - - it Mwlf

Mwl-pvey ff Mwlkpor Muwl-y

M, w I Op iff  for all w’ € W, wRw' implies I, w’ I+ ¢

M, w - mp iff  forall w' € W, M, w' Ik .
A Kripke model 9 = (W, R, V') satisfies a formula ¢ at a world w € W iff
M, w I ¢; and it validates p, written M I @, iff M, w IF @, for all w € W. The

model M satisfies a set of formulas @ at w, notation M, w IF @, if M, w I+ ¢ for
all p € ®. And it validates ®, notation M IF &, if M, w I+  for all w € W.

The following proposition links Kripke models and the algebraic structures
introduced in Sec. 2.3 (the full details can be found, e.g., in [32]).

Definition 3.15. Let M = (B, *,—, 1, fU, f¥) be a m-modal algebra; its dual,
written M®, is a frame (Uf(M), R) where: Uf(M) is the set of all ultrafilters
in M and R is defined by uq Rus iff —f"(—a) € u;y for all a € us. The dual
of an interpretation v : F — M is a function v® : Prop — 2UVfM) defined as:
v®(p) = {u € Uf(M) | v(p) € u}. We define (M,v)* = (M*,v*).

Proposition 3.8. Let M be a @m-modal algebra and v : F — M, be an inter-
pretation on M; for all equations ¢ = .

M, v E o=~ iff (M,0)° IF @ <.

Let us recall the standard notion of bisimulation for Kripke models [6].
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Definition 3.16. For i € {1,2}, let 9, = (W;, R; C W2, V; : Prop — 2"i) be a
Kripke model; a (non-empty) relation Z C W; x W is a bisimulation between
Ny and My iff wi Z we implies

(atom) wy € Vi(p) iff we € Va(p), for all p € Prop;

(forth) if wy Ry ws, there is wy € Wy s.t. we Ry wy and w3 Z wy;

(back) if wg Ro wy, there is wg € Wy s.t. w1 Ry ws and ws Z wy.

The bisimulation Z is total iff: for all w; € W7, exists wo € W s.t. wy Z wo;

and for all wy € Wh, exists wy € W7 s.t. w1 Zwy. We write Ty € My iff there is
a total bisimulation Z between 9, and Msy; and Ny, wy € Mo, wo iff wy Z ws.

Prop. 3.9 states a well-known result regarding bisimulations.
Proposition 3.9. If My < My, then, My - iff W - p.
Prop. 3.9 has an analogous proposition in terms of @-modal algebras.

Definition 3.17. Let M; and M5 be two @-modal algebras and v; and vy be
interpretations on My and My, respectively; we write (My,v1) € (Ma,vs) iff
(M, 01)" & (Mg, v2)°.

Proposition 3.10. Let M; and M5 be two @-modal algebras and v; and vy
be interpretations on M; and My, respectively; if (Mj,v1) € (Mg, v2), then,
M, v F o=y iff Mo, v F o).

We are now in a position to show how to extend and adapt the concept of
bisimulation to the algebraic treatment of defaults and extensions.

Definition 3.18. Let D; and Dy be the default monoids associated to two
default modal systems built on the same underlying modal system; a (non-
empty) relation Z C £ x £ is a default bisimulation iff Ly Z Ly implies:

(atom) (Lj,v;) 2 (Lg,vs) where v; : F — L; is the canonical interpretation;
(fOI‘th) for all d; € |D1‘7 there is dy € |D2| s.t. dl(Ll) ZdQ(LQ),
(back) for all dy € |Dg|, there is d; € |Dq]| s.t. d1(L1) Z da(La).

We write Dy € Dy iff there is a default bisimulation Z between D; and Do;
and Dl,Ll b= D2,L2 if L Z L.

The definition of a default bisimulation in Def. 3.18 enables us to compare
when two default monoids are indistinguisable; or, what is the same, it enables
us to compare when two default modal systems are indistinguisable. This fact
is stated in Prop. 3.11.

Proposition 3.11. If D;,L; & Dy, Ly, then L; ky o =9 iff Ly kg ¢ = 1)
where k; is the relation in Def. 3.11 formulated w.r.t. D;.

Proof. Let Z be a default bisimulation between D and D3, and L; Z Ly,. We
prove the left-to-right direction, i.e., if L Ry ¢ & 1, then, Ly ko @ & 1. As-
sume Lj Ky ¢ &~ . There is di € |Dq| s.t. di(Ly) E ¢ = 4. In particular,
di(Ly),v1 Ep = for vy : F — f(L1) the canonical interpretation on L;. From
(forth), there is da € |Dg| s.t. di(Ly) Z do(Lz). Then, from (atom), we obtain
(di1(Ly),v1) € (da(Lg),vs) for vy : F — fo(Ls) the canonical interpretation
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on Ls. Using Prop. 3.10, it follows that da(Ls),v2 E ¢ &~ . Since canoni-
cal interpretations are closed under substitution, fo(Ls) E ¢ & 1. Therefore,
Lo ks ¢ & 1. The right-to-left direction follows the same argument using (back)
instead of (forth).

We conclude this section with a comment on an application of the concept of
bisimulation between default monoids to the problem of equivalence of so-called
default theories. More precisely, in Default Logic, a default theory is a pair
(®, A) where @ is a set of formulas and A is a set of defaults. The problem of
equivalence of default theories pertains to the following question: in which sense
two default theories (@1, A1) and (®y, Ag) can be regarded as equivalent? Ade-
quate answers to this question have a bearing in the setting of transformation of
logical programs, e.g., to improve efficiency, as default theories may be seen as
the logical counterpart of logical programs. It is common, e.g., [27, 20], to ad-
dress equivalence of default theories from a syntactic point of view by focusing on
what is the case w.r.t. extensions. Under such a point of view, a default theory
(®1, Aq) is deemed equivalent to a default theory (®5, As) whenever Eill = Eiz;
and they are deemed to be strongly equivalent whenever (®; U ®3, A U A3) and
(Py U B3, Ay U Ag) are equivalent for all default theories (@3, As). By way of
example, ({0Op},0) and (@, {T/Op}) are equivalent, but they are not strongly
equivalent (as ({O—p}, 0) distinguishes them). The concept of bisimulation be-
tween default monoids enables us to look at the problem of equivalence of default
theories in a new light, i.e., from a semantic perspective. For a fixed underlying
modal system, we could say that (1, A1) and (®y, As) are equivalent whenever
D, L% < D, L®: (where D; and D are the default monoids associated to
the default modal systems constructed relative to A; and Ag, resp). The notion
of strong equivalence is defined in a similar way. To be noted, our definition
of equivalence is given in semantic terms building on the notion of bisimulation
for the underlying modal system. To be noted also, our definition of equiva-
lence pays closer attention to the different elements of a default theory (i.e.,
its set of formulas and its set of defaults). For instance, notice that under our
definition, ({Op},®) and (B, {T/Op}) are not equivalent, as L{TP} v ¢ LY v,
for v1 and ve the canonical interpretations on the corresponding LT m-modal
algebras. Looking at problems of equivalence from a semantic perspective has a
long standing tratition in the field of Modal Logic. In this respect, bisimulations
have proven to be a useful tool. The concept of bisimulation between default
monoids is a step in this direction. It is worth noting that a practical advantage
of bisimulations over other techniques for proving semantic equivalence is given
by checking properties orelative to given points. In our case, this boils down to
prove properties of the Lindenbaum-Tarski algebras. This has a “local” flavor
that is in contrast to proving equivalence between default theories which are, in
some sense, “global” in nature; in that they need to look into the entire collection
of extensions. Furthermore, it is worth noting that bisimulations can be alge-
braized via coalgebras. In this respect, our work seems a natural step towards
the definition an algebraic toolset for reasoning about default modal systems
in a mathematical setting. As further work also, it remains to generalize the
concept of bisimulation between default monoids along two main lines: default
operators defined relative to arbitrary defaults, and arbitrary @-modal algebras.
This generalization seems an ideal tool for discussing the deductive aspects of
default theories independently of their particular syntactical constructs.
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4 On Defaults as Model Updates

We are now in a position to establish a connection between our algebraic ap-
proach for default modal systems and the algebraic treatment of Public An-
nouncement Logic (PAL) in [23].

To set up context for discussion, we briefly introduce some basic notions of
PAL (see, e.g., [24] for details). As a modal logic, PAL extends the modal logic
S5 (seen as the logic of knowledge) with a new modality (%) of announcement,
defined as:

Mw - (1) iff 9, w Ik <) implies My, w IF o, (3)

where 90, is the restriction of 9 to those states in which ¢ hods. Intuitively,
a formula (1)@ states that after the truthful announcement of ¥, ¢ holds.
Model theoretically, the interpretation of announcing 1 relativizes the model
in which ¢ is announced to the submodel in which 1 holds everywhere. The
formula ¢ is then evaluated on the relativized model. It should be noted that
the announcement of 1) must be truthful: it occurs only if 1 is true. Otherwise,
the announcement “fails” and (1) evaluates to false.

There are some interesting similarities between announcements in PAL and
defaults. From an algebraic perspective, an announcement may be understood
as a homomorphism between the modal algebra in which the announcement
occurs and the modal algebra corresponding to the submodel in which the an-
nounced formula holds. This is the approach taken in [23]. In the default case,
the algebraic machinery introduced in Sec. 3.3 sets the basis for thinking about
the application of defaults as a logic of updates between particular modal al-
gebras (LT w-modal algebras). More precisely, we may construe the algebraic
semantics of a default as an update from the LT m-modal algebra in which the
default is considered, to the LT m-modal algebra updated with the consequent
of the default (if the default is applicable). Notice that a default update takes
place only if the prerequisite of the default is provable and its consequent does
not yield an inconsistency. The situation here is similar to the case of announce-
ments, where the update takes place only if the formula being announced is true
(see Eq. (3)). In both cases, that of an announcement and that of the algebraic
application of a default, the update is captured by a homomorphism from the
original modal algebra to an updated modal algebra (obtained as a quotient
construction). There is, however, a subtle difference between announcements
and defaults: if the announcement of ¢ is not truthful the whole formula (1¢)p
amounts to a falsity; whereas if the prerequisite of a default is not provable,
or its consequent is inconsistent in the modal algebra, the application of the
default has no effect.

The similarities between announcements in PAL and defaults are even more
apparent when contrasted with the way in which announcements are dealt with
in [23]. In particular, the approach in [23] exploits the duality between models
and algebras in order to algebraize PAL. Therein, a formula v is interpreted
as an element b in an S5 modal algebra M = (B,*,—, fP). The result of
announcing this formula is a modal algebra constructed as a quotient modulo a
congruence =, defined as:

blEbe iff bl*b:bg*b

This congruence bears a close resemblance to the one we presented in Sec. 3.3.
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The main difference between this congruence and ours rests on the fact that
the former is presented in the setting of S5, whereas ours is presented in a
setting where global modal consequence is taken as the basis on which to build
default modal systems. This said, the approach in [23] is more abstract than
ours; since it considers arbitrary modal algebras and not just those obtained via
Lindenbaum-Tarski constructions.

The discussion above offers only some first steps in understanding the rela-
tionship between defaults and updates: both in terms of a full algebraization
of default modal systems, and in terms of establishing a tight connection with
logics of updates. In working towards a full algebraization of default modal
systems, we would like to interpret the application of a default over arbitrary
modal algebras, and not only as an update over LT m-modal algebras. In this
regard, the main challenge is how to generalize the way in which we capture the
application of one default to the application of a sequence of defaults needed to
build an extension. Moreover, it would also be interesting to know whether it
is possible to develop a class of algebraic structures for default modal systems
parallel to the class of modal algebras for modal systems. This would require
an internalization of defaults as algebraic operators. In turn, in what refers to
establishing a tight connection with logics of updates, it would be interesting to
be able to prove a reduction result between a default modal system and a logic
of announcements (or establishing a difference in expressive power between one
and the other). In this case, the challenge is deciding on an adequate logic of
announcements and in finding whether it is possible to faithfully translate the
application of a default as a form of update in this logic. Finally, upon defining
the semantics of defaults as updates, we would like to study defaults as dynamic
epistemic operators. In particular, we would like to explore whether defaults
can be used to represent some novel form of communication between agents in
a multi-agent setting.

5 Final Remarks

We presented a family of default logics built on modal logics ranging from K
to Sb, and studied some of their properties. We approached this presentation,
first, syntactically via what we called a default modal system. For each default
modal system we formulated a notion of default deducibility to make explicit
how defaults interact with deducibility in the underlying modal system. Then,
we offered an algebraic treatment of defaults and extensions, via transforma-
tions on LT m@-modal algebras and default monoids, respectively. The algebraic
treatment enabled us to obtain an algebraic completeness result. Interestingly
enough, this approach also enabled us to think of a way of comparing default
logics by borrowing ideas from the concept of a bisimulation in modal logic. To
our knowledge, this is the first work addressing default logic algebraically.
There are several interesting lines for future work. We do notice that our
work is not an algebraization of a logic. Instead, we have taken advantage of
algebraic tools to study default modal systems from a semantic perspective. In
this respect, our work is a first step towards an algebraization of default modal
systems. There is still a need to identify a class of algebras for default modal
systems that would play a role akin to @-modal algebras in modal systems. We
also wish to generalize our constructions and results to arbitrary @-modal alge-
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bras and not just LT m-modal algebras. We consider that the trail of coalgebras
(see [33]) may provide an adequate abstract framework in which to generalize
and further investigate our ideas. Bisimulations can be algebraized via coalge-
bras. In this respect, our work on bisimulations between default monoids is a
natural step towards the definition an algebraic toolset for reasoning about de-
fault modal systems in a mathematical setting. Furthermore, we wish to exploit
our algebraic treatment of default modal systems to study semantic properties
such as: invariance and Hennessy-Milner theorems, interpolation, Beth defin-
ability, etc.

Lastly, our characterization of defaults as transformations on m-modal alge-
bras works as a sort of “update”. It would interesting to find connections with
algebraic approaches to logics with update operators, in the sense of e.g. Public
Announcement Logic. The work reported in [23] seems to shed some light in
this direction.
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